STOCKHOLM (AP) — Three scientists won the Nobel Prize in physics on Tuesday for giving us the first split-second glimpse into the superfast world of spinning electrons, a field that could one day lead to better electronics or disease diagnoses.
The award went to French-Swedish physicist Anne L’Huillier, French scientist Pierre Agostini and Hungarian-born Ferenc Krausz for their work with the tiny part of each atom that races around the center and is fundamental to virtually everything: chemistry, physics, our bodies and our gadgets.
Electrons move so fast that they have been out of reach of human efforts to isolate them, but by looking at the tiniest fraction of a second possible, scientists now have a “blurry” glimpse of them and that opens up whole new sciences, experts said.
“The electrons are very fast, and the electrons are really the workforce in everywhere,” Nobel Committee member Mats Larsson said. “Once you can control and understand electrons, you have taken a very big step forward.”
L’Huillier, of Lund University in Sweden, is the fifth woman to receive a Nobel in physics.
“For all the women, I say if you are interested, if you have a little bit of passion for this type of challenges, so just go for it,” she told The Associated Press.
WHAT DISCOVERY WON THE NOBEL PRIZE IN PHYSICS?
The scientists, who worked separately, used ever-quicker laser pulses to catch the atomic action that happened at such dizzying speeds — one quintillionth of a second, known as an attosecond — much like the way photographers use fast shutters to capture a hummingbird feeding.
How small is that?
“Let’s take one second, which is the time of a heartbeat,” Nobel Committee chair Eva Olsson said. To get the realm of the attosecond, that would have to be divided by 1,000 six times.
Physicist Mark Pearce, a Nobel Committee member, said “there are as many attoseconds in a second as there are seconds which have passed since the Big Bang, 13.8 billion years ago.”
But even when scientists “see” the electron, there’s only so much they can view.
“You can see whether it’s on the one side of a molecule or on the other,” said L’Huillier, 65. “It’s still very blurry.”
“The electrons are much more like waves, like water waves, than particles and what we try to measure with our technique is the position of the crest of the waves,” she added.WHY DO ELECTRONS MATTER?
Electrons are key because that’s “how the atoms bind together,” L’Huillier said. It’s where chemical reactions occur.